Powrót
ID:3348

2022 III Pokazowy / Informacja do zadań 1.–3.
Elektrony atomu pierwiastka X w stanie podstawowym zajmują siedem orbitali, przy czym sześć z nich jest całkowicie zapełnionych. Ten pierwiastek reaguje zarówno z kwasem solnym, jak i ze stężonym wodnym roztworem wodorotlenku potasu. Jednym z produktów obu przemian jest ten sam gaz.

Zadanie 1. (0–1)
Uzupełnij poniższą tabelę – wpisz dane dotyczące położenia pierwiastka X w układzie okresowym oraz symbol bloku konfiguracyjnego, do którego ten pierwiastek należy.

Pierwiastek Numer okresu Numer grupy Symbol bloku
X      


ID:3349

2022 III Pokazowy / Informacja do zadań 1.–3.
Elektrony atomu pierwiastka X w stanie podstawowym zajmują siedem orbitali, przy czym sześć z nich jest całkowicie zapełnionych. Ten pierwiastek reaguje zarówno z kwasem solnym, jak i ze stężonym wodnym roztworem wodorotlenku potasu. Jednym z produktów obu przemian jest ten sam gaz.

Zadanie 2. (0–1)
Oceń prawdziwość poniższych zdań. Zaznacz P, jeżeli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

1. W stanie podstawowym tylko 6 elektronów atomu pierwiastka X jest opisanych główną liczbą kwantową 𝑛 równą 2.  P F
2. Żaden elektron atomu pierwiastka X w stanie podstawowym nie jest opisany poboczną liczbą kwantową 𝑙 równą 2.   P F



ID:3350

2022 III Pokazowy / Informacja do zadań 1.–3.
Elektrony atomu pierwiastka X w stanie podstawowym zajmują siedem orbitali, przy czym sześć z nich jest całkowicie zapełnionych. Ten pierwiastek reaguje zarówno z kwasem solnym, jak i ze stężonym wodnym roztworem wodorotlenku potasu. Jednym z produktów obu przemian jest ten sam gaz.

Zadanie 3. (0–2)
Napisz w formie jonowej skróconej równania reakcji pierwiastka X:
– z kwasem solnym (reakcja 1.)
oraz
– ze stężonym roztworem wodorotlenku potasu (reakcja 2.).
W reakcji 2. powstaje jon kompleksowy o liczbie koordynacji równej 4.

Równanie reakcji 1.: ..................................................
Równanie reakcji 2.: ..................................................



ID:3351

2022 III Pokazowy / Zadanie 4. (0–1)
Poniżej przedstawiono konfigurację elektronową atomów czterech pierwiastków (I – IV):
I 1s22s22p63s23p64s1 
II 1s22s22p63s23p64s13d5   
III 1s22s22p63s23p64s13d104p3   
IV 1s22s22p63s23p64s13d10   

Napisz, która z przedstawianych konfiguracji elektronowych opisuje atom w stanie wzbudzonym. Odpowiedź uzasadnij.
Konfiguracja: .....................................
Uzasadnienie: ...................................



ID:3352

2022 III Pokazowy / Zadanie 5. (0–1)
Tenes – pierwiastek chemiczny o liczbie atomowej Z = 117 – otrzymano w reakcji jądrowej między 48Ca i 249Bk. W tym procesie powstały dwa izotopy tenesu, przy czym reakcji tworzenia jądra jednego z tych izotopów towarzyszyła emisja 3 neutronów. Ten izotop ulegał dalszym przemianom: w wyniku kilku kolejnych przemian α otrzymano dubn – 270Db.

Napisz równanie reakcji otrzymywania opisanego izotopu tenesu – uzupełnij wszystkie pola w poniższym schemacie. Napisz, w wyniku ilu przemian 𝛂 ten izotop tenesu przekształcił się w 270Db.

Otrzymywanie izotopu tenesu:
izotopy promieniotwórcze przemiany
Liczba przemian α: ..........



ID:3353

2022 III Pokazowy / Zadanie 6.
Metoda VSEPR pozwala określać kształt cząsteczek zbudowanych z atomów pierwiastków grup głównych. W cząsteczce należy wyróżnić atom centralny (np. atom tlenu w cząsteczce H2O) i ustalić liczbę wolnych par elektronowych na jego zewnętrznej powłoce. Następnie zsumować liczbę podstawników związanych z atomem centralnym (𝑥) i liczbę jego wolnych par elektronowych (𝑦). W ten sposób otrzymuje się tzw. liczbę przestrzenną (𝐿p = 𝑥 + 𝑦), która determinuje kształt cząsteczki. Ponieważ zarówno wolne, jak i wiążące pary elektronowe wzajemnie się odpychają, wszystkie elementy składające się na liczbę przestrzenną (podstawniki i wolne pary elektronowe) zajmują jak najbardziej odległe od siebie położenia wokół atomu centralnego.
Na podstawie: R. J. Gillespie, Fifty years of the VSEPR model; Coordination Chemistry Reviews 252 (2008) 1315.

Zadanie 6.1. (0–2)
Uzupełnij poniższą tabelę – dla wymienionych cząsteczek napisz wartości 𝒙 i 𝒚 oraz określ kształt cząsteczki (liniowa, kątowa, trójkątna, tetraedryczna).

  CO2 SO2 OF2
x      
y      
kształt cząsteczki      


ID:3354

2022 III Pokazowy / Zadanie 6.
Metoda VSEPR pozwala określać kształt cząsteczek zbudowanych z atomów pierwiastków grup głównych. W cząsteczce należy wyróżnić atom centralny (np. atom tlenu w cząsteczce H2O) i ustalić liczbę wolnych par elektronowych na jego zewnętrznej powłoce. Następnie zsumować liczbę podstawników związanych z atomem centralnym (𝑥) i liczbę jego wolnych par elektronowych (𝑦). W ten sposób otrzymuje się tzw. liczbę przestrzenną (𝐿p = 𝑥 + 𝑦), która determinuje kształt cząsteczki. Ponieważ zarówno wolne, jak i wiążące pary elektronowe wzajemnie się odpychają, wszystkie elementy składające się na liczbę przestrzenną (podstawniki i wolne pary elektronowe) zajmują jak najbardziej odległe od siebie położenia wokół atomu centralnego.
Na podstawie: R. J. Gillespie, Fifty years of the VSEPR model; Coordination Chemistry Reviews 252 (2008) 1315.

Zadanie 6.2. (0–1)
Poniżej przedstawiono dwa modele przestrzenne (I i II) różnych cząsteczek o wzorze ogólnym AB4.
kształt cząsteczek VSEPR
Rozstrzygnij, który z przedstawionych modeli (I albo II) jest ilustracją kształtu cząsteczki SF4. Uzasadnij swój wybór. Zastosuj metodę VSEPR.
Cząsteczkę SF4 przedstawia model ..............
Uzasadnienie: ..............................................



ID:3356

2022 III Pokazowy / Zadanie 7. (0–1)
Na podstawie budowy atomów pierwiastków należących do grup 1.–2. oraz 13.–17. drugiego okresu układu okresowego uzupełnij poniższe zdanie. W wyznaczone miejsca wpisz symbol albo nazwę odpowiedniego pierwiastka.

Spośród pierwiastków drugiego okresu:
•najmniejszy ładunek jądra ma atom …………..…………………………………………….……;
•najmniejszy promień atomowy ma atom …………………………...…………………….………;
•najmniejszą wartość pierwszej energii jonizacji ma atom ………………………..……………



ID:3357

2022 III Pokazowy / Informacja do zadań 8.–9.
W pewnej wodzie mineralnej znajdują się jony: Ca2+, Mg2+ oraz HCO3. Ich zawartość przedstawiono w poniższej tabeli.

Składnik mineralny Zawartość, mg∙dm–3
Ca2+ 457
Mg2+ 50
HCO3 1836

Zadanie 8.
Przeprowadzono doświadczenie zilustrowane na poniższym schemacie:
strącenie osadów woda mineralna
W wyniku przeprowadzonego doświadczenia w każdej probówce zaobserwowano zmianę świadczącą o zajściu reakcji chemicznej. W probówce II, w wyniku przeprowadzonego doświadczenia, wydzielił się biały osad.

Zadanie 8.1. (0–1)
Opisz zmiany, które można zaobserwować w probówkach I i III.

Probówka I: .................................................
Probówka III: ................................................
Zadanie 8.2. (0–1)
Rozstrzygnij, czy na podstawie przeprowadzonego doświadczenia można stwierdzić, że w badanej wodzie mineralnej są obecne też inne jony niż Mg2+, Ca2+ oraz HCO3 . Uzasadnij swoją odpowiedź.

Rozstrzygnięcie: ...................................
Uzasadnienie: .......................................



ID:3358

2022 III Pokazowy / Informacja do zadań 8.–9.
W pewnej wodzie mineralnej znajdują się jony: Ca2+, Mg2+ oraz HCO3. Ich zawartość przedstawiono w poniższej tabeli.

Składnik mineralny Zawartość, mg∙dm–3
Ca2+ 457
Mg2+ 50
HCO3 1836

Zadanie 9. (0–2)
Podczas gotowania 1000 cm3 tej wody mineralnej zaobserwowano powstanie białego osadu. W opisanych warunkach przebiegły reakcje opisane równaniami:
Ca2+ + 2HCO3 → CaCO3 + CO2 + H2O
Mg2+ + 2HCO3 → MgCO3 + CO2 + H2O
Oblicz, jaki procent masy wydzielonego osadu stanowi masa węglanu magnezu. Przyjmij, że obie reakcje zachodzą z wydajnością równą 100 %, a powstały osad składa się wyłącznie z węglanu wapnia i węglanu magnezu.



ID:3359

2022 III Pokazowy / Informacja do zadań 10.–11.
Sól Mohra to zwyczajowa nazwa siarczanu(VI) żelaza(II) i amonu o wzorze (NH4)2Fe(SO4)2. W laboratorium chemicznym ten związek jest często używany jako wygodne i stabilne źródło jonów żelaza(II). Zarówno sama sól Mohra, jak i jej wodne roztwory są odporne na utlenianie na powietrzu.

Zadanie 10. (0–1)
Obecność jonów amonowych w roztworze soli Mohra powoduje, że odczyn tego roztworu nie jest obojętny.
Napisz równanie reakcji odpowiadającej za odczyn wodnego roztworu soli Mohra na podstawie definicji kwasów i zasad Brønsteda. Wzory odpowiednich drobin wpisz w poniższą tabelę.

kwas 1 + zasada 2 zasada 1 + kwas 2
       

 



ID:3360

2022 III Pokazowy / Informacja do zadań 10.–11.
Sól Mohra to zwyczajowa nazwa siarczanu(VI) żelaza(II) i amonu o wzorze (NH4)2Fe(SO4)2. W laboratorium chemicznym ten związek jest często używany jako wygodne i stabilne źródło jonów żelaza(II). Zarówno sama sól Mohra, jak i jej wodne roztwory są odporne na utlenianie na powietrzu.
Zadanie 11.

Przeprowadzono dwuetapowe doświadczenie. W pierwszym etapie do dwóch probówek (A i B) z roztworem soli Mohra dodano wodny roztwór wodorotlenku sodu. Wynik doświadczenia w obu probówkach był identyczny i został przedstawiony na fotografii.
W czasie doświadczenia zaszła reakcja chemiczna opisana równaniem:
Fe2+ + 2OH → Fe(OH)2  
Zaobserwowano również, że zwilżony uniwersalny papierek wskaźnikowy umieszczony u wylotu probówki zabarwił się na niebiesko.
Fe2+ + 2 OH-

Zadanie 11.1. (0–1)
Napisz w formie jonowej skróconej równanie reakcji zachodzącej po dodaniu wodnego roztworu wodorotlenku sodu, w wyniku której powstała substancja odpowiedzialna za zmianę barwy uniwersalnego papierka wskaźnikowego.
.......................................................
Zadanie 11.2. (0–1)

W drugim etapie doświadczenia do zawartości probówki A otrzymanej w poprzednim etapie dodano wodę utlenioną, czyli roztwór nadtlenku wodoru o stężeniu 3 %. Wynik tej części doświadczenia przedstawiono na fotografii.
Napisz w formie cząsteczkowej równanie reakcji zachodzącej w probówce A.
...................................................
wodorotlenek żelaza

Zadanie 11.3. (0–1)
Probówkę B pozostawiono przez dłuższy czas na powietrzu. W probówce zaobserwowano zmiany, które zilustrowano na poniższych fotografiach.

——————— czas ———————→
Wyjaśnij przyczyny obserwowanych zmian w probówce B pomimo niedodania do tej probówki żadnego odczynnika.
Wyjaśnienie: ......................................



ID:3361

2022 III Pokazowy / Zadanie 12. (0–1)
Gazowy wodór wydziela się w reakcjach różnych metali z kwasami, a najaktywniejsze metale redukują wodę do wodoru. Na zajęciach koła chemicznego uczniowie mieli zaprojektować laboratoryjną metodę otrzymywania wodoru, inną niż stosowane powszechnie działanie kwasem solnym na cynk.
Zaproponowano przeprowadzenie następujących reakcji:
uczeń A – magnezu z kwasem octowym;
uczeń B – potasu z wodą;
uczeń C – cynku ze stężonym kwasem azotowym(V).
Nauczyciel stwierdził, że wodór powstaje w dwóch spośród zaproponowanych reakcji, ale tylko jedna z nich jest możliwa do przeprowadzenia w szkolnej pracowni chemicznej.
Napisz, który uczeń poprawnie zaprojektował doświadczenie. Wyjaśnij, dlaczego druga propozycja doświadczenia, w którym również powstaje wodór, była nieodpowiednia. Odwołaj się do zasad bezpieczeństwa i higieny pracy obowiązujących w szkolnej pracowni chemicznej.
Doświadczenie poprawnie zaprojektował uczeń: .............
Wyjaśnienie: ...............................................................



ID:3362

2022 III Pokazowy / Zadanie 13. (0–2)
Do zlewki wprowadzono 80 cm3 roztworu mocnego (całkowicie zdysocjowanego), jednoprotonowego kwasu HA o stężeniu 0,10 mol · dm–3. Następnie do zlewki wprowadzono 45 cm3 roztworu wodorotlenku potasu o stężeniu 0,15 mol · dm–3. Do takiej mieszaniny dodawano kroplami roztwór wodorotlenku sodu o stężeniu 0,2 mol · dm–3 do momentu uzyskania roztworu o pH równym 2,1.
Oblicz objętość dodanego roztworu wodorotlenku sodu. Przyjmij, że objętość mieszaniny była sumą objętości zmieszanych roztworów.



Powrót
Copyright 2011-2022Chem24.pl
Wszelkie prawa autorskie do treści zawartych w serwisie chem24.pl należą do właściciela portalu.
Treść strony i wszystkie elementy strony chem24.pl podlegają ochronie prawnej zawartej w przepisach o prawie autorskim.
Niedozwolone jest kopiowanie, rozpowszechnianie i udostępnianie innym użytkownikom bez zgody autora.

Niedozwolone działania stanowią okradanie autora i podlegają przepisom zawartym w Kodeksie Karnym.