Powrót
ID:3803

2021 VI / Informacja do zadań 1.–2.
Chlor występuje w przyrodzie w postaci mieszaniny dwóch izotopów. W jądrze izotopu o mniejszej liczbie masowej znajduje się 18 neutronów. Zawartość procentowa tego izotopu
w występującym w przyrodzie pierwiastku wynosi 75,78%. Średnia masa atomowa chloru jest równa 35,453 u, a jeden z izotopów tego pierwiastka ma masę równą 34,969 u.
Na podstawie: J. Sawicka i inni, Tablice chemiczne, Gdańsk 2015.
Zadanie 1. (0–2)
Wartość masy atomowej danego izotopu podana z dokładnością do liczby całkowitej jest równa jego liczbie masowej.
Oblicz masę atomową drugiego izotopu chloru. Wynik końcowy zaokrąglij do trzeciego miejsca po przecinku. Podaj liczbę masową tego izotopu chloru i określ liczbę neutronów w jego jądrze atomowym.

Masa atomowa: ……………. Liczba masowa: ................... Liczba neutronów: ...............



ID:3804

2021 VI / Zadanie 2. (0–2)
Chlor występuje w związkach chemicznych na wielu różnych stopniach utlenienia.
Uzupełnij poniższe zdania. Wpisz informacje dotyczące struktury elektronowej atomu chloru i jego stopni utlenienia oraz nazwę kwasu tlenowego chloru.
1. Pełna podpowłokowa konfiguracja elektronowa atomu chloru w stanie podstawowym ma postać ................................................................... . W jego rdzeniu atomowym (na
wewnętrznych powłokach elektronowych) znajduje się .............. elektronów. Chlor należy do bloku konfiguracyjnego ............... .
2. Minimalny stopień utlenienia, jaki przyjmuje chlor w związkach chemicznych, jest równy ............. . Kwas tlenowy, w którym chlor ma najwyższy możliwy stopień utlenienia, ma nazwę
...........................



ID:3805

2021 VI / Zadanie 3. (0–2)
Zidentyfikuj pierwiastki chemiczne na podstawie podanych niżej opisów konfiguracji atomów lub jonów w stanie podstawowym. Wpisz ich symbole do tabeli.

Opis konfiguracji Symbol pierwiastka
Konfiguracja elektronowa dwudodatniego jonu tego pierwiastka jest taka sama jak konfiguracja elektronowa atomu argonu.  
Ten pierwiastek należy do bloku p. Elektrony w atomie tego pierwiastka (w stanie podstawowym) rozmieszczone są na czterech powłokach elektronowych, a na podpowłoce p powłoki walencyjnej liczba elektronów sparowanych jest równa liczbie elektronów niesparowanych.  
Elektrony w atomie tego pierwiastka są rozmieszczone na czterech powłokach elektronowych. W stanie podstawowym liczba elektronów na podpowłoce d jest taka sama jak liczba elektronów 
na powłoce o najwyższej energii.
 




 



ID:3806

2021 VI / Zadanie 4.
Fosforowodór PH3 to związek o temperaturze topnienia równej −133oC i temperaturze wrzenia równej −88oC (pod ciśnieniem atmosferycznym). W skroplonym fosforowodorze oddziaływania międzycząsteczkowe są dużo słabsze niż w skroplonym amoniaku.
Na podstawie: L. Kolditz (red.), Chemia nieorganiczna, Warszawa 1994.
Zadanie 4.1. (0–1)
Na podstawie różnicy elektroujemności między fosforem a wodorem oraz informacji wprowadzającej uzupełnij poniższe zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie.

Cząsteczka fosforowodoru PH3 ma kształt (trójkąta równobocznego / liniowy / piramidy o podstawie trójkąta). Wiązanie w PH3 ma charakter (jonowy / kowalencyjny).
Zadanie 4.2. (0–1)
Uzupełnij poniższe zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie.

Temperatura wrzenia skroplonego amoniaku jest (wyższa / niższa) niż temperatura wrzenia fosforowodoru. Bardzo dobra rozpuszczalność (fosforowodoru / amoniaku) w wodzie jest spowodowana silnym oddziaływaniem między cząsteczkami tego związku a cząsteczkami wody i tworzeniem się między nimi wiązań wodorowych.
 



ID:3807

2021 VI / Zadanie 5. (0–1)
Poniżej przedstawiono wzory elektronowe cząsteczek dwóch pierwiastków, oznaczonych umownie literami A i D. Oba pierwiastki należą do drugiego okresu układu okresowego.

Zidentyfikuj pierwiastki A i D, a następnie uzupełnij poniższe zdania. Wybierz i zaznacz jedną odpowiedź spośród podanych w każdym nawiasie.
Większy ładunek jądra ma atom pierwiastka oznaczonego literą (A / D). Mniejszy promień atomowy ma atom pierwiastka oznaczonego literą (A / D).



ID:3808

2021 VI / Informacja do zadań 6.–9.
Do reaktora, w którym znajdowała się stała substancja X, wprowadzono pod ciśnieniem atmosferycznym gazową substancję Y i zapoczątkowano reakcję chemiczną, w wyniku której
powstawał gaz Z. Po 10 minutach, w temperaturze T1, ustaliła się równowaga opisana równaniem:
X (s) + Y (g) ⇄ Z (g)
Na wykresie przedstawiono wyniki pomiaru liczby moli gazowych reagentów w trakcie trwania procesu oraz po ustaleniu się stanu równowagi w temperaturze T1. W piętnastej minucie
eksperymentu zmieniono w układzie temperaturę na T2 wyższą od T1, czego konsekwencją było ustalenie się nowego stanu równowagi po dwudziestu minutach eksperymentu, co także
zilustrowano na poniższym wykresie.

Zadanie 6. (0−1)
Rozstrzygnij, czy w temperaturze T2 – w porównaniu z przemianą zachodzącą w temperaturze T1 – następuje:
• wzrost szybkości reakcji tworzenia substancji Z; ....................
• spadek szybkości reakcji rozkładu substancji Z. ....................
Odpowiedzi uzasadnij.

...........................................................

Zadanie 7. (0−1)
Rozstrzygnij, czy reakcja tworzenia związku Z jest procesem endoenergetycznym. Odpowiedź uzasadnij.

Rozstrzygnięcie: ................................................
Uzasadnienie: ....................................................

Zadanie 8. (0−1)
Napisz wyrażenie na stężeniową stałą równowagi reakcji tworzenia związku Z i oszacuj jej wartość w temperaturze T1. Uwzględnij fakt, że w wyrażeniu na stałą równowagi tej reakcji pomija się stężenie substancji stałej.

Wyrażenie na stałą równowagi: .........................................
Oszacowana wartość stałej równowagi: ............................

Zadanie 9. (0−1)
Uzupełnij poniższe zdanie. Wybierz i zaznacz jedną odpowiedź spośród podanych w nawiasie.

Wraz ze zmniejszeniem ciśnienia w układzie w warunkach izotermicznych wydajność reakcji otrzymywania substancji Z (wzrośnie / zmaleje / się nie zmieni).



ID:3809

2021 VI / Zadanie 10. (0–2)
W zamkniętym zbiorniku znajdowała się pewna ilość NO2. W temperaturze 800 K gaz ulegał rozkładowi zgodnie z równaniem:
2NO2 (g) ⇄ 2NO (g) + O2 (g) ΔH > 0
Po ustaleniu się stanu równowagi w naczyniu znajdowało się 90 g tlenku azotu(II). Wydajność rozkładu NO2 wyniosła 60%.
Na podstawie: W. Mizerski, Tablice chemiczne, Warszawa 2008.
Określ:
• stosunek molowy tlenków azotu w zbiorniku w stanie równowagi;
• liczbę moli tlenu w zbiorniku w stanie równowagi;
• masę tlenku azotu(IV) wprowadzonego do zbiornika przed zainicjowaniem reakcji – w gramach.

Stosunek molowy n NO2 : nNO = ........... : .........
Liczba moli tlenu n O2 = .......... mol
Masa tlenku azotu(IV) przed zainicjowaniem reakcji m NO2 = .......... g



ID:3810

2021 VI / Informacja do zadań 11.–14.
Skroplony amoniak jest rozpuszczalnikiem, który – podobnie jak woda – ulega autodysocjacji polegającej na przeniesieniu protonu między cząsteczkami rozpuszczalnika. Rezultatem tego
procesu jest powstanie kationów NH4+ i anionów NH2 .
Wszystkie substancje chemiczne, które w skroplonym amoniaku zwiększają stężenie kationów NH4+ , w tych warunkach są kwasami, a te związki chemiczne, które w skroplonym amoniaku zwiększają stężenie anionów NH2 , są zasadami. Zobojętnianie w skroplonym amoniaku polega na reakcji kationów NH4+ i anionów NH2 z wytworzeniem cząsteczek NH3.
Na podstawie: L. Kolditz (red.), Chemia nieorganiczna, Warszawa 1994.
Zadanie 11. (0–1)
Napisz równanie autodysocjacji amoniaku – zastosuj definicję kwasu i zasady Brønsteda. Wpisz wzory odpowiednich drobin do schematu.

kwas 1 + zasada 2 ⇄ zasada 1 + kwas 2 
........... + ............... ⇄ .............. + .............

Zadanie 12. (0–1)
Napisz w formie cząsteczkowej równanie reakcji zobojętniania zachodzącej w skroplonym amoniaku między bromkiem amonu NH4Br a amidkiem wapnia Ca(NH2)2.

........................................................



ID:3811

2021 VI / Informacja do zadań 11.–14.
Skroplony amoniak jest rozpuszczalnikiem, który – podobnie jak woda – ulega autodysocjacji polegającej na przeniesieniu protonu między cząsteczkami rozpuszczalnika. Rezultatem tego procesu jest powstanie kationów NH4+ i anionów NH2 .
Wszystkie substancje chemiczne, które w skroplonym amoniaku zwiększają stężenie kationów NH4+ , w tych warunkach są kwasami, a te związki chemiczne, które w skroplonym amoniaku zwiększają stężenie anionów NH2 , są zasadami. Zobojętnianie w skroplonym amoniaku polega na reakcji kationów NH4+ i anionów NH2 z wytworzeniem cząsteczek NH3.
Na podstawie: L. Kolditz (red.), Chemia nieorganiczna, Warszawa 1994.
Zadanie 13. (0–2)
Amidek cynku o wzorze Zn(NH2)2 nie rozpuszcza się w skroplonym amoniaku. Ten związek łatwo reaguje z chlorkiem amonu rozpuszczonym w skroplonym amoniaku, a także z amidkiem potasu o wzorze KNH2. Oznacza to, że amidek cynku ma charakter amfoteryczny. Produktem reakcji z amidkiem potasu – użytym w nadmiarze – jest jon kompleksowy o liczbie koordynacji równej 4, w którym jony amidkowe NH2 pełnią funkcję ligandów.
Na podstawie: J.D. Lee, Zwięzła chemia nieorganiczna, Warszawa 1999.
Napisz:
• w formie jonowej skróconej równanie reakcji zachodzącej w skroplonym amoniaku między amidkiem cynku a chlorkiem amonu;

.............................................
• w formie cząsteczkowej równanie reakcji zachodzącej w skroplonym amoniaku między amidkiem cynku a amidkiem potasu użytym w nadmiarze.
..........................................



ID:3812

2021 VI / Zadanie 14. (0–2)
W ciekłym amoniaku azotan(V) amonu wykazuje zdolność utleniającego roztwarzania metali – tak jak kwas azotowy(V) w wodzie. Reakcja miedzi z azotanem(V) amonu w skroplonym amoniaku przebiega zgodnie ze schematem:
Cu + NH4+ + NO3 → Cu2+ + NO2 + H2O + NH3  
Na podstawie: L. Kolditz (red.), Chemia nieorganiczna, Warszawa 1994.
Napisz w formie jonowej skróconej, z uwzględnieniem liczby oddawanych lub pobieranych elektronów (zapis jonowo-elektronowy), równania procesów redukcji i utleniania zachodzących podczas opisanej przemiany. Uwzględnij środowisko reakcji – obecność jonów NH4+ . Określ stosunek molowy reduktora do utleniacza w tej reakcji.
Równanie procesu redukcji:
......................................................
Równanie procesu utleniania:
......................................................
Stosunek molowy nreduktora : nutleniacza = .....................



ID:3813

2021 VI / Informacja do zadań 15.–16.
Przeprowadzono doświadczenie, podczas którego do kolby zawierającej 100 cm3 wodnego roztworu jednoprotonowego kwasu HA dodawano porcjami wodny roztwór wodorotlenku sodu o stężeniu 0,1 mol · dm−3 i mierzono pH mieszaniny reakcyjnej. Podczas doświadczenia zachodziła reakcja opisana schematem:
HA + NaOH → NaA + H2O
Doświadczenie prowadzono w temperaturze 25oC. Jego przebieg zilustrowano poniższym wykresem, zwanym krzywą miareczkowania.

Po dodaniu takiej objętości roztworu wodorotlenku sodu, w jakiej znajdowała się liczba moli NaOH równa liczbie moli kwasu HA w roztworze wziętym do analizy, w układzie został osiągnięty punkt równoważnikowy (PR). W opisanym doświadczeniu pH w punkcie równoważnikowym było równe 8,6.
Zadanie 15. (0–1)
Po wykonaniu doświadczenia sformułowano następujący wniosek: Na podstawie otrzymanych wyników można jednoznacznie stwierdzić, że kwas HA nie jest mocnym elektrolitem.
Rozstrzygnij, czy powyższy wniosek jest prawdziwy. Uzasadnij swoją odpowiedź – napisz w formie jonowej skróconej równanie reakcji ilustrujące równowagę, która ustaliła się w punkcie równoważnikowym. Użyj ogólnego wzoru kwasu HA.
Rozstrzygnięcie: ………………………………
Równanie reakcji ilustrujące stan równowagi:
.........................................
 



ID:3814

2021 VI / Informacja do zadań 15.–16.
Przeprowadzono doświadczenie, podczas którego do kolby zawierającej 100 cm3 wodnego roztworu jednoprotonowego kwasu HA dodawano porcjami wodny roztwór wodorotlenku sodu o stężeniu 0,1 mol · dm−3 i mierzono pH mieszaniny reakcyjnej. Podczas doświadczenia zachodziła reakcja opisana schematem:
HA + NaOH → NaA + H2O
Doświadczenie prowadzono w temperaturze 25oC. Jego przebieg zilustrowano poniższym wykresem, zwanym krzywą miareczkowania.

Po dodaniu takiej objętości roztworu wodorotlenku sodu, w jakiej znajdowała się liczba moli NaOH równa liczbie moli kwasu HA w roztworze wziętym do analizy, w układzie został osiągnięty punkt równoważnikowy (PR). W opisanym doświadczeniu pH w punkcie równoważnikowym było równe 8,6.
Zadanie 16.
Krzywa miareczkowania może służyć do wyznaczenia wartości stałej dysocjacji kwasu (Ka), a przez to pozwala zidentyfikować kwas poddawany miareczkowaniu. Jedna z metod polega na wyznaczeniu tak zwanego punktu połowicznego zmiareczkowania (PP), w którym stężenie HA jest równe stężeniu A .
Stała równowagi dysocjacji kwasu HA opisana jest wyrażeniem:
Ka=[H3O+]·[A]  / [HA], czyli    [H3O+]= Ka·[HA] / [A]
Stężenie HA jest równe stężeniu A − po dodaniu połowy objętości roztworu NaOH potrzebnej do osiągnięcia punktu równoważnikowego (PR). Wtedy:
[H3O+] = Ka, czyli pH = –log [H3O + ] = –log Ka = pKa  
Tak więc w punkcie połowicznego zmiareczkowania pH jest równe –log Ka.
Zadanie 16.1. (0–2)
Odczytaj z wykresu krzywej miareczkowania i napisz wartość pH w punkcie połowicznego zmiareczkowania (PP). Który z wymienionych poniżej kwasów mógł być użyty w opisanym doświadczeniu? Wybierz i zaznacz jego wzór.

Wartość pH w punkcie połowicznego zmiareczkowania: .............
Wzór kwasu:
HClO       CH3COOH       HClO2  
Zadanie 16.2. (0–1)
Oceń prawdziwość poniższych zdań. Zaznacz P, jeżeli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

1. Stężenie miareczkowanego kwasu wynosiło 0,2 mol · dm−3. P F
2. W punkcie połowicznego zmiareczkowania (PP) stężenie anionów wodorotlenkowych jest niższe niż stężenie kationów sodu. P F
3. W punkcie równoważnikowym (PR) w roztworze nie ma niezdysocjowanych cząsteczek kwasu HA. P F
 



ID:3815

2021 VI / Zadanie 17.
Do trzech probówek wprowadzono takie same objętości wodnego roztworu wodorotlenku sodu (Vz) o trzech różnych stężeniach molowych (c1, c2, c3) i dodano do nich po 2 krople roztworu oranżu metylowego. Do probówek dodano następnie, mieszając, takie same objętości kwasu solnego (Vk) o znanym stężeniu molowym (ck). Przebieg doświadczenia zilustrowano na poniższym schemacie.

Po zakończeniu doświadczenia okazało się, że zmiana barwy roztworu nastąpiła tylko w probówce II.
Zadanie 17.1. (0–1)
Uzupełnij poniższą tabelę. Napisz, jaką barwę miał roztwór w probówce II przed reakcją i po zakończeniu reakcji.

Barwa roztworu w probówce II
przed reakcją po reakcji
   

Zadanie 17.2. (0–2)
Rozstrzygnij, czy na podstawie przeprowadzonego doświadczenia można jednoznacznie wskazać, w której probówce znajdował się:

• roztwór NaOH o najwyższym stężeniu. Odpowiedź uzasadnij.
Rozstrzygnięcie: .........................
Uzasadnienie: .............................
• roztwór NaOH o najniższym stężeniu. Odpowiedź uzasadnij.
Rozstrzygnięcie: .........................
Uzasadnienie: ............................



ID:3816

2021 VI / Zadanie 18. (0–2)
Roztwór wodny chloru to tzw. woda chlorowa Cl2 (aq). W tym roztworze ustala się równowaga opisana równaniem:
Cl2 + H2O ⇄ HCl + HClO
Powstający oksokwas pod wpływem światła ulega częściowemu rozkładowi z wydzieleniem tlenu:
2HClO → 2HCl + O2  
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.
10,65 g chloru rozpuszczono w 1800 cm3 wody, a otrzymaną wodę chlorową pozostawiono na pewien czas w otwartym naczyniu na świetle.
Oblicz stężenie molowe kwasu solnego w roztworze w momencie, w którym 1,0% chloru obecnego w roztworze uległ reakcji chemicznej z wodą, a oksokwas powstający w roztworze uległ w 50% reakcji rozkładu. W obliczeniach przyjmij, że sumaryczna objętość roztworu się nie zmieniła i wynosiła 1800 cm3



ID:3817

2021 VI / Informacja do zadań 19.–21.
Przeprowadzono doświadczenie 1. zgodnie z poniższym schematem.

Następnie wykonano doświadczenie 2., do którego użyto roztworów tych samych kwasów – o takiej samej objętości i stężeniu jak roztwory użyte w doświadczeniu 1. W doświadczeniu 2.
do roztworów dodano jednak inną sól – Na2CO3 – o masie 0,53 g.
Zadanie 19. (0–1)
Napisz w formie jonowej skróconej równanie reakcji zachodzącej w doświadczeniu 1. podczas dodawania węglanu magnezu do zlewek.

.................................................
Zadanie 20. (0–1)
Rozstrzygnij, czy po zakończeniu doświadczenia 1. z użyciem węglanu magnezu w każdej zlewce otrzymano mieszaninę jednorodną. Odpowiedź uzasadnij.

  Zlewka I Zlewka II
Rozstrzygnięcie    
Uzasadnienie

............................ ..............................

Zadanie 21. (0–1)
Oceń prawdziwość poniższych zdań. Zaznacz P, jeżeli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

1. W doświadczeniu 1. w reakcji kwasu siarkowego(VI) z węglanem magnezu wydzieliło się mniej gazu niż w doświadczeniu 2. w reakcji kwasu siarkowego(VI) z węglanem sodu. P F
2. W doświadczeniu 2., w którym użyto węglanu sodu, w zlewkach I i II wydzieliło się tyle samo gazu. P F
3. Po zakończeniu reakcji w zlewce II z użyciem węglanu sodu (doświadczenie 2.) odczyn roztworu był kwasowy. P F



ID:3818

2021 VI / Zadanie 22. (0–2)
Do 50 cm3 wodnego roztworu CuSO4 o stężeniu 0,4 mol ∙ dm−3 wprowadzono 783 mg opiłków pewnego metalu X, który reagował z jonami Cu2+ w stosunku molowym 1:1. Metal X w szeregu napięciowym metali jest przed kadmem. Po zakończeniu reakcji do otrzymanej mieszaniny dodano 1200 mg opiłków kadmu i wtedy reakcja przebiegała dalej, do całkowitego odbarwienia roztworu. Kadm reagował z jonami Cu2+ w stosunku molowym 1:1. Po zakończeniu reakcji, wydzielono z jej produktów mieszaninę metali i stwierdzono, że zawiera ona 19% masowych kadmu.
Oblicz masę molową metalu X i podaj jego symbol chemiczny. Przyjmij, że masy molowe są równe: M Cu = 63,55 g ∙ mol−1, M Cd = 112,41 g ∙ mol−1.
Symbol chemiczny metalu: ……………



ID:3819

2021 VI / Zadanie 23.
Przeprowadzono doświadczenie zgodnie z poniższym schematem.

Zadanie 23.1. (0–2)
Napisz w formie jonowej skróconej równanie reakcji zachodzącej po dodaniu opiłków ołowiu do zlewki I. Rozstrzygnij, czy po zakończeniu doświadczenia masa roztworu w zlewce I wzrosła czy zmalała. Odpowiedź uzasadnij.

Równanie zachodzącej reakcji: .......................................
Rozstrzygnięcie: ..............................................................
Uzasadnienie: ..................................................................



ID:3820

2021 VI / Zadanie 23.
Przeprowadzono doświadczenie zgodnie z poniższym schematem.

Zadanie 23.2. (0–1)
Po zakończeniu doświadczenia na dnie zlewki II znajdowały się dwa metale: cynk oraz miedź.
Uzupełnij poniższą tabelę. Napisz, jaką barwę miał roztwór w probówce II przed reakcją i po jej zakończeniu.

Barwa roztworu w zlewce II
przed doświadczeniem po zakończeniu doświadczenia
   


 



ID:3821

2021 VI / Zadanie 24.
Poniżej przedstawiono równania protolizy (dysocjacji) wielostopniowej kwasu ortofosforowego(V) oraz wartości stałych dysocjacji tych procesów.
H3PO4 + H2O ⇄ H2PO4 + H3O+            Ka1 = 7,5 · 10−3  
H2PO4 + H2O ⇄ HPO42– + H3O+          Ka2 = 6,2 · 10−9    
HPO42–  + H2O ⇄ PO43– + H3O+            Ka3 = 2,2 · 10−13   
Na podstawie: A. Bielański, Podstawy chemii nieorganicznej, Warszawa 2004.
Zadanie 24.1. (0–1)
Uszereguj jony obecne w wodnym roztworze kwasu ortofosforowego(V) i powstające podczas protolizy (dysocjacji) tego kwasu według wzrastających stężeń. Napisz wzory tych jonów w odpowiedniej kolejności.

..................................... ............................................
najmniejsze stężenie jonów - największe stężenie jonów
Zadanie 24.2. (0–1)
Napisz wzory tych jonów, obecnych w wodnym roztworze kwasu ortofosforowego(V), które zgodnie z teorią kwasów i zasad Brønsteda mogą pełnić w reakcjach chemicznych funkcję zarówno kwasu, jak i zasady.

.................................



ID:3822

2021 VI / Zadanie 25. (0–2)
Próbkę mieszaniny NaCl i MgCl2 o masie 3,7 g rozpuszczono w wodzie, a do otrzymanej mieszaniny dodano nadmiar wodnego roztworu AgNO3. W roztworze zaszła reakcja opisana równaniem:
Ag+ + Cl → AgCl↓
Odsączony, przemyty i wysuszony osad AgCl ważył 10,0 g.
Oblicz masę chlorku magnezu w próbce mieszaniny. Wynik podaj w gramach i zaokrąglij do jednego miejsca po przecinku.



ID:3823

2021 VI / Zadanie 26. (0–2)
O dwóch alkanach A i B wiadomo, że:
• cząsteczki każdego alkanu zbudowane są z pięciu atomów węgla
• alkan A tworzy w reakcji z bromem wyłącznie jedną monobromopochodną
• w cząsteczce alkanu B jest jeden atom węgla na –I stopniu utlenienia.
Uzupełnij tabelę. Narysuj wzór półstrukturalny (grupowy) monobromopochodnej alkanu A i wzór półstrukturalny (grupowy) alkanu B oraz napisz nazwy systematyczne obu związków.

Wzór monobromopochodnej alkanu A Wzór alkanu B
   
Nazwa systematyczna monobromopochodnej alkanu A Nazwa systematyczna alkanu B
   

 



ID:3824

2021 VI / Zadanie 27. (0–2)
W wyniku spalenia 1,00 g związku organicznego w nadmiarze tlenu uzyskano jako jedyne produkty: 1,42 g CO2 oraz 0,87 g H2O.
Wykonaj odpowiednie obliczenia i napisz elementarny (najprostszy) wzór związku organicznego, który spalono.



ID:3825

2021 VI / Informacja do zadań 28.–29.
Podstawnik w pierścieniu aromatycznym wpływa na miejsce wprowadzenia następnego podstawnika do pierścienia. Grupy alkilowe, –Cl, –Br, –NH2, –OH kierują następny wprowadzany podstawnik w pozycje 2- i 4- (orto- i para-) w stosunku do własnego położenia. Gdy w pierścieniu znajdują się grupy –NO2, –COOH czy –CHO, to następny podstawnik jest wprowadzany głównie w pozycję 3- (meta-). Na poniższym schemacie zilustrowano ciąg przemian chemicznych, w wyniku których z benzenu powstają związki organiczne A, B i C.

Zadanie 28. (0–1)
Oceń prawdziwość poniższych zdań. Zaznacz P, jeżeli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

1. Przemiana oznaczona numerem 4 to przykład reakcji substytucji przebiegającej według mechanizmu rodnikowego. P F
2. W przemianie oznaczonej numerem 2 formalny stopień utlenienia atomu węgla połączonego bezpośrednio z pierścieniem benzenowym wzrasta o 6. P F
3. Związek C, będący głównym produktem reakcji oznaczonej numerem 3, to kwas 3-chlorobenzenokarboksylowy (3-chlorobenzoesowy). P F



ID:3826

2021 VI / Informacja do zadań 28.–29.
Podstawnik w pierścieniu aromatycznym wpływa na miejsce wprowadzenia następnego podstawnika do pierścienia. Grupy alkilowe, –Cl, –Br, –NH2, –OH kierują następny wprowadzany podstawnik w pozycje 2- i 4- (orto- i para-) w stosunku do własnego położenia. Gdy w pierścieniu znajdują się grupy –NO2, –COOH czy –CHO, to następny podstawnik jest wprowadzany głównie w pozycję 3- (meta-). Na poniższym schemacie zilustrowano ciąg przemian chemicznych, w wyniku których z benzenu powstają związki organiczne A, B i C.

Zadanie 29. (0–1)
Napisz wzory półstrukturalne (grupowe) lub uproszczone związków A i B, które są głównymi produktami przemiany oznaczonej na schemacie numerem 5.



ID:3827

2021 VI / Informacja do zadań 30.–33.
Próba jodoformowa polega na działaniu jodem w roztworze wodorotlenku sodu na badany związek organiczny. O pozytywnym wyniku eksperymentu świadczy pojawienie się żółtego osadu trijodometanu nazywanego jodoformem. Taki wynik wskazuje m.in. na obecność grupy metylowej w sąsiedztwie grupy karbonylowej w cząsteczce. Próba jodoformowa pozwala również na wykrycie obecności alkoholi o strukturze:

gdzie R oznacza atom wodoru, grupę alkilową lub arylową.
Jod reaguje z wodorotlenkiem sodu zgodnie z równaniem:
I2 + 2NaOH → NaI + NaIO + H2O
Następnie jeden z produktów tej reakcji – związek o wzorze NaIO – reaguje z alkoholem:

Na podstawie: R. T. Morrison, R. N. Boyd, Chemia organiczna, Warszawa 1996.
Zadanie 30. (0–1)
Określ stopnie utlenienia atomu jodu i podkreślonego atomu węgla w reakcji etapu (1). Przyjmij, że w reakcji tej R to grupa metylowa –CH3. Uzupełnij poniższą tabelę.

  Stopień utlenienia atomu
  jodu węgla
w substracie reakcji    
w produkcie reakcji    

Zadanie 31. (0–1)
Spośród wymienionych niżej alkoholi wybierz wszystkie, które dają pozytywny wynik próby jodoformowej. Podkreśl nazwy wybranych związków.

2-metylopropan-2-ol      pentan-2-ol      pentan-3-ol      1-fenyloetanol

Zadanie 32. (0–1)
Uzupełnij poniższy schemat. Napisz w formie cząsteczkowej sumaryczne równanie próby jodoformowej przebiegającej po dodaniu do etanolu wodnych roztworów jodu i wodorotlenku sodu. Napisz wzory produktów i dobierz współczynniki stechiometryczne. Zastosuj wzory półstrukturalne (grupowe) związków organicznych.

... I2 +... NaOH + ... CH3CH2OH → ..................... + .................... +..................... + ...................



ID:3828

2021 VI / Informacja do zadań 30.–33.
Próba jodoformowa polega na działaniu jodem w roztworze wodorotlenku sodu na badany związek organiczny. O pozytywnym wyniku eksperymentu świadczy pojawienie się żółtego osadu trijodometanu nazywanego jodoformem. Taki wynik wskazuje m.in. na obecność grupy metylowej w sąsiedztwie grupy karbonylowej w cząsteczce. Próba jodoformowa pozwala również na wykrycie obecności alkoholi o strukturze:

gdzie R oznacza atom wodoru, grupę alkilową lub arylową.
Jod reaguje z wodorotlenkiem sodu zgodnie z równaniem:
I2 + 2NaOH → NaI + NaIO + H2O
Następnie jeden z produktów tej reakcji – związek o wzorze NaIO – reaguje z alkoholem:

Na podstawie: R. T. Morrison, R. N. Boyd, Chemia organiczna, Warszawa 1996.
Zadanie 33. (0–1)
Przeprowadzono doświadczenie, którego przebieg zilustrowano na poniższym schemacie.

Napisz, czy w wyniku tego doświadczenia w probówce powstał żółty osad jodoformu. Odpowiedź uzasadnij. Odnieś się do budowy cząsteczki badanej substancji.

W probówce (powstał / nie powstał) żółty osad jodoformu.
Uzasadnienie: .....................................................



ID:3829

2021 VI / Informacja do zadań 34.–36.
Nasycony związek organiczny X o czterech atomach węgla zawiera w cząsteczce dwie różne grupy funkcyjne, które reagują z sodem, ale tylko jedna z nich – z wodorotlenkiem sodu. W wyniku utleniania związku X za pomocą jonów dichromianowych(VI) w obecności jonów H+ otrzymuje się kwas bursztynowy o wzorze HOOC−CH2−CH2−COOH.
Zadanie 34. (0–2)
Uzupełnij poniższą tabelę. Narysuj wzory półstrukturalne (grupowe) związku X oraz jednego izomeru związku X o budowie łańcuchowej, którego cząsteczki są chiralne. Zaznacz (*) asymetryczny atom węgla (centrum stereogeniczne).

Wzór związku X Wzór izomeru związku X

 

 

Zadanie 35. (0–2)
Napisz:
• wzór półstrukturalny (grupowy) organicznego produktu reakcji, który powstałby, gdyby związek X przereagował z nadmiarem sodu;

...............................................
• w formie cząsteczkowej równanie reakcji kwasu bursztynowego z nadmiarem wodorotlenku sodu. Związki organiczne przedstaw za pomocą wzorów pólstrukturalnych (grupowych).
...............................................
Zadanie 36. (0–1)
W wysokiej temperaturze kwas bursztynowy HOOC−CH2−CH2−COOH ulega odwodnieniu. Jedna cząsteczka kwasu bursztynowego odszczepia jedną cząsteczkę wody i tworzy bezwodnik, którego cząsteczka ma strukturę pierścienia pięcioczłonowego.
Narysuj wzór półstrukturany (grupowy) bezwodnika kwasu bursztynowego.
....................................



ID:3830

2021 VI / Informacja do zadań 37.–38.
Glutation to tripeptyd występujący w komórkach organizmów roślinnych i zwierzęcych. Poniżej przedstawiono jego wzór półstrukturalny (grupowy).

Zadanie 37. (0–1)
Napisz nazwy zwyczajowe aminokwasów, które powstają w wyniku całkowitej hydrolizy glutationu.

......................................................

Zadanie 38. (0–2)
Wykonano doświadczenie, w którym do dwóch probówek z tym samym odczynnikiem wprowadzono wodne roztwory:
• do probówki I – wodny roztwór glutationu
• do probówki II – wodny roztwór powstały po całkowitej hydrolizie glutationu.
W jednej z probówek zaobserwowano powstanie różowofioletowego roztworu.
Uzupełnij schemat doświadczenia. Podkreśl nazwę odczynnika, który – po dodaniu do niego roztworów glutationu oraz produktów jego hydrolizy i wymieszaniu zawartości każdej probówki – pozwoli na uzyskanie opisanego wyniku doświadczenia. Napisz numer probówki, w której zaobserwowano opisaną zmianę.

Numer probówki: ..........



Powrót
Copyright 2011-2024Chem24.pl
Wszelkie prawa autorskie do treści zawartych w serwisie chem24.pl należą do właściciela portalu.
Treść strony i wszystkie elementy strony chem24.pl podlegają ochronie prawnej zawartej w przepisach o prawie autorskim.
Niedozwolone jest kopiowanie, rozpowszechnianie i udostępnianie innym użytkownikom bez zgody autora.

Niedozwolone działania stanowią okradanie autora i podlegają przepisom zawartym w Kodeksie Karnym.